Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development.

Identifieur interne : 000C78 ( Main/Exploration ); précédent : 000C77; suivant : 000C79

Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development.

Auteurs : Jean-Philippe Reichheld [France] ; Mehdi Khafif ; Christophe Riondet ; Michel Droux ; Géraldine Bonnard ; Yves Meyer

Source :

RBID : pubmed:17586656

Descripteurs français

English descriptors

Abstract

NADPH-dependent thioredoxin reductases (NTRs) are key regulatory enzymes determining the redox state of the thioredoxin system. The Arabidopsis thaliana genome has two genes coding for NTRs (NTRA and NTRB), both of which encode mitochondrial and cytosolic isoforms. Surprisingly, plants of the ntra ntrb knockout mutant are viable and fertile, although with a wrinkled seed phenotype, slower plant growth, and pollen with reduced fitness. Thus, in contrast with mammals, our data demonstrate that neither cytosolic nor mitochondrial NTRs are essential in plants. Nevertheless, in the double mutant, the cytosolic thioredoxin h3 is only partially oxidized, suggesting an alternative mechanism for thioredoxin reduction. Plant growth in ntra ntrb plants is hypersensitive to buthionine sulfoximine (BSO), a specific inhibitor of glutathione biosynthesis, and thioredoxin h3 is totally oxidized under this treatment. Interestingly, this BSO-mediated growth arrest is fully reversible, suggesting that BSO induces a growth arrest signal but not a toxic accumulation of activated oxygen species. Moreover, crossing ntra ntrb with rootmeristemless1, a mutant blocked in root growth due to strongly reduced glutathione synthesis, led to complete inhibition of both shoot and root growth, indicating that either the NTR or the glutathione pathway is required for postembryonic activity in the apical meristem.

DOI: 10.1105/tpc.107.050849
PubMed: 17586656
PubMed Central: PMC1955716


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development.</title>
<author>
<name sortKey="Reichheld, Jean Philippe" sort="Reichheld, Jean Philippe" uniqKey="Reichheld J" first="Jean-Philippe" last="Reichheld">Jean-Philippe Reichheld</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Génome et Développement des Plantes, Université de Perpignan, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 5096, Perpignan, France. jpr@univ-perp.fr</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Génome et Développement des Plantes, Université de Perpignan, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 5096, Perpignan</wicri:regionArea>
<placeName>
<region type="region">Occitanie (région administrative)</region>
<region type="old region">Languedoc-Roussillon</region>
<settlement type="city">Perpignan</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Khafif, Mehdi" sort="Khafif, Mehdi" uniqKey="Khafif M" first="Mehdi" last="Khafif">Mehdi Khafif</name>
</author>
<author>
<name sortKey="Riondet, Christophe" sort="Riondet, Christophe" uniqKey="Riondet C" first="Christophe" last="Riondet">Christophe Riondet</name>
</author>
<author>
<name sortKey="Droux, Michel" sort="Droux, Michel" uniqKey="Droux M" first="Michel" last="Droux">Michel Droux</name>
</author>
<author>
<name sortKey="Bonnard, Geraldine" sort="Bonnard, Geraldine" uniqKey="Bonnard G" first="Géraldine" last="Bonnard">Géraldine Bonnard</name>
</author>
<author>
<name sortKey="Meyer, Yves" sort="Meyer, Yves" uniqKey="Meyer Y" first="Yves" last="Meyer">Yves Meyer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17586656</idno>
<idno type="pmid">17586656</idno>
<idno type="doi">10.1105/tpc.107.050849</idno>
<idno type="pmc">PMC1955716</idno>
<idno type="wicri:Area/Main/Corpus">000C56</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C56</idno>
<idno type="wicri:Area/Main/Curation">000C56</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C56</idno>
<idno type="wicri:Area/Main/Exploration">000C56</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development.</title>
<author>
<name sortKey="Reichheld, Jean Philippe" sort="Reichheld, Jean Philippe" uniqKey="Reichheld J" first="Jean-Philippe" last="Reichheld">Jean-Philippe Reichheld</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Génome et Développement des Plantes, Université de Perpignan, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 5096, Perpignan, France. jpr@univ-perp.fr</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Génome et Développement des Plantes, Université de Perpignan, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 5096, Perpignan</wicri:regionArea>
<placeName>
<region type="region">Occitanie (région administrative)</region>
<region type="old region">Languedoc-Roussillon</region>
<settlement type="city">Perpignan</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Khafif, Mehdi" sort="Khafif, Mehdi" uniqKey="Khafif M" first="Mehdi" last="Khafif">Mehdi Khafif</name>
</author>
<author>
<name sortKey="Riondet, Christophe" sort="Riondet, Christophe" uniqKey="Riondet C" first="Christophe" last="Riondet">Christophe Riondet</name>
</author>
<author>
<name sortKey="Droux, Michel" sort="Droux, Michel" uniqKey="Droux M" first="Michel" last="Droux">Michel Droux</name>
</author>
<author>
<name sortKey="Bonnard, Geraldine" sort="Bonnard, Geraldine" uniqKey="Bonnard G" first="Géraldine" last="Bonnard">Géraldine Bonnard</name>
</author>
<author>
<name sortKey="Meyer, Yves" sort="Meyer, Yves" uniqKey="Meyer Y" first="Yves" last="Meyer">Yves Meyer</name>
</author>
</analytic>
<series>
<title level="j">The Plant cell</title>
<idno type="ISSN">1040-4651</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anthocyanins (metabolism)</term>
<term>Arabidopsis (enzymology)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (growth & development)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Diploidy (MeSH)</term>
<term>Enzyme Activation (MeSH)</term>
<term>Fertility (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genetic Complementation Test (MeSH)</term>
<term>Glutaredoxins (MeSH)</term>
<term>Glutathione (metabolism)</term>
<term>Models, Biological (MeSH)</term>
<term>Mutation (genetics)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Phenotype (MeSH)</term>
<term>Plant Roots (cytology)</term>
<term>Plant Roots (growth & development)</term>
<term>Pollen (metabolism)</term>
<term>Seedlings (metabolism)</term>
<term>Seeds (metabolism)</term>
<term>Thioredoxin-Disulfide Reductase (genetics)</term>
<term>Thioredoxin-Disulfide Reductase (metabolism)</term>
<term>Thioredoxins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation enzymatique (MeSH)</term>
<term>Anthocyanes (métabolisme)</term>
<term>Arabidopsis (croissance et développement)</term>
<term>Arabidopsis (enzymologie)</term>
<term>Arabidopsis (génétique)</term>
<term>Diploïdie (MeSH)</term>
<term>Fécondité (MeSH)</term>
<term>Glutarédoxines (MeSH)</term>
<term>Glutathion (métabolisme)</term>
<term>Graines (métabolisme)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Mutation (génétique)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Plant (métabolisme)</term>
<term>Pollen (métabolisme)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Racines de plante (croissance et développement)</term>
<term>Racines de plante (cytologie)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Test de complémentation (MeSH)</term>
<term>Thioredoxin-disulfide reductase (génétique)</term>
<term>Thioredoxin-disulfide reductase (métabolisme)</term>
<term>Thiorédoxines (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Thioredoxin-Disulfide Reductase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Anthocyanins</term>
<term>Arabidopsis Proteins</term>
<term>Glutathione</term>
<term>Oxidoreductases</term>
<term>Thioredoxin-Disulfide Reductase</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Arabidopsis</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Mutation</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Arabidopsis</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Mutation</term>
<term>Protéines d'Arabidopsis</term>
<term>Thioredoxin-disulfide reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Pollen</term>
<term>Seedlings</term>
<term>Seeds</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Anthocyanes</term>
<term>Glutathion</term>
<term>Graines</term>
<term>Oxidoreductases</term>
<term>Plant</term>
<term>Pollen</term>
<term>Protéines d'Arabidopsis</term>
<term>Thioredoxin-disulfide reductase</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Diploidy</term>
<term>Enzyme Activation</term>
<term>Fertility</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genetic Complementation Test</term>
<term>Glutaredoxins</term>
<term>Models, Biological</term>
<term>Oxidation-Reduction</term>
<term>Oxidative Stress</term>
<term>Phenotype</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Activation enzymatique</term>
<term>Diploïdie</term>
<term>Fécondité</term>
<term>Glutarédoxines</term>
<term>Modèles biologiques</term>
<term>Oxydoréduction</term>
<term>Phénotype</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Stress oxydatif</term>
<term>Test de complémentation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">NADPH-dependent thioredoxin reductases (NTRs) are key regulatory enzymes determining the redox state of the thioredoxin system. The Arabidopsis thaliana genome has two genes coding for NTRs (NTRA and NTRB), both of which encode mitochondrial and cytosolic isoforms. Surprisingly, plants of the ntra ntrb knockout mutant are viable and fertile, although with a wrinkled seed phenotype, slower plant growth, and pollen with reduced fitness. Thus, in contrast with mammals, our data demonstrate that neither cytosolic nor mitochondrial NTRs are essential in plants. Nevertheless, in the double mutant, the cytosolic thioredoxin h3 is only partially oxidized, suggesting an alternative mechanism for thioredoxin reduction. Plant growth in ntra ntrb plants is hypersensitive to buthionine sulfoximine (BSO), a specific inhibitor of glutathione biosynthesis, and thioredoxin h3 is totally oxidized under this treatment. Interestingly, this BSO-mediated growth arrest is fully reversible, suggesting that BSO induces a growth arrest signal but not a toxic accumulation of activated oxygen species. Moreover, crossing ntra ntrb with rootmeristemless1, a mutant blocked in root growth due to strongly reduced glutathione synthesis, led to complete inhibition of both shoot and root growth, indicating that either the NTR or the glutathione pathway is required for postembryonic activity in the apical meristem.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17586656</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>10</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1040-4651</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>19</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2007</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>The Plant cell</Title>
<ISOAbbreviation>Plant Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development.</ArticleTitle>
<Pagination>
<MedlinePgn>1851-65</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>NADPH-dependent thioredoxin reductases (NTRs) are key regulatory enzymes determining the redox state of the thioredoxin system. The Arabidopsis thaliana genome has two genes coding for NTRs (NTRA and NTRB), both of which encode mitochondrial and cytosolic isoforms. Surprisingly, plants of the ntra ntrb knockout mutant are viable and fertile, although with a wrinkled seed phenotype, slower plant growth, and pollen with reduced fitness. Thus, in contrast with mammals, our data demonstrate that neither cytosolic nor mitochondrial NTRs are essential in plants. Nevertheless, in the double mutant, the cytosolic thioredoxin h3 is only partially oxidized, suggesting an alternative mechanism for thioredoxin reduction. Plant growth in ntra ntrb plants is hypersensitive to buthionine sulfoximine (BSO), a specific inhibitor of glutathione biosynthesis, and thioredoxin h3 is totally oxidized under this treatment. Interestingly, this BSO-mediated growth arrest is fully reversible, suggesting that BSO induces a growth arrest signal but not a toxic accumulation of activated oxygen species. Moreover, crossing ntra ntrb with rootmeristemless1, a mutant blocked in root growth due to strongly reduced glutathione synthesis, led to complete inhibition of both shoot and root growth, indicating that either the NTR or the glutathione pathway is required for postembryonic activity in the apical meristem.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Reichheld</LastName>
<ForeName>Jean-Philippe</ForeName>
<Initials>JP</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire Génome et Développement des Plantes, Université de Perpignan, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 5096, Perpignan, France. jpr@univ-perp.fr</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Khafif</LastName>
<ForeName>Mehdi</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Riondet</LastName>
<ForeName>Christophe</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Droux</LastName>
<ForeName>Michel</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bonnard</LastName>
<ForeName>Géraldine</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Meyer</LastName>
<ForeName>Yves</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>06</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell</MedlineTA>
<NlmUniqueID>9208688</NlmUniqueID>
<ISSNLinking>1040-4651</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000872">Anthocyanins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="C497521">NTRA protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="C497522">NTRB protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="D013880">Thioredoxin-Disulfide Reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000872" MajorTopicYN="N">Anthocyanins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004171" MajorTopicYN="N">Diploidy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005298" MajorTopicYN="N">Fertility</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005816" MajorTopicYN="N">Genetic Complementation Test</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011058" MajorTopicYN="N">Pollen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012639" MajorTopicYN="N">Seeds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013880" MajorTopicYN="N">Thioredoxin-Disulfide Reductase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>10</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17586656</ArticleId>
<ArticleId IdType="pii">tpc.107.050849</ArticleId>
<ArticleId IdType="doi">10.1105/tpc.107.050849</ArticleId>
<ArticleId IdType="pmc">PMC1955716</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:93-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14502986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Apr;134(4):1479-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15047900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;347:332-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11898424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Mar;25(5):1980-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15713651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2006 Dec 15;177(12):8569-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17142755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2003 Feb;4(2):184-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12612609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Aug 1;301(5633):653-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12893945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Jan 28;287(5453):655-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10649999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Jan;12(1):97-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10634910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1985;54:237-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3896121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;347:360-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11898427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 1999 Apr;4(4):136-141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10322547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2003 Sep 2;42(34):10060-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12939134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):446-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16531482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2000 Jun;36(5):1167-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10844700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 2;281(22):15058-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16574642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1996 Dec 20;264(5):1044-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9000629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Dec 18;555(3):443-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2006 Dec;273(24):5589-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17096689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2745-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2642-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14983062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Nov;127(3):1299-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11706208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1993 Nov 1;217(3):831-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8223639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2005 Feb;4(2):392-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15701801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1996 Feb;9(2):195-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8820606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 May;13(5):1063-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11340182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Jan 17;579(2):337-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15642341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2004 Jun;61(11):1266-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15170506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2000;54:439-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11018134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Dec 8;270(49):29386-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7493974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Dec;142(4):1364-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17071643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Oct;267(20):6102-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11012661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2006 Sep;89(2-3):179-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17031546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1988 May;8(5):1985-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3386631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 1996 Aug 25;178(1):179-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8812119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(11):R85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15535861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Oct 15;279(42):43821-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15292215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2002 Sep 12;21(41):6317-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12214272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):14144-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11717467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Jul;11(7):329-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16782394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1987;143:85-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3657565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Oct;136(2):3209-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Aug;132(4):2045-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12913160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Sep;18(9):2356-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16891402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Mar;134(3):1006-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14976236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Feb;107(2):365-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7724670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:371-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2003 Jul;217(3):392-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14520565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):397-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16760494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Dec 14;408(6814):796-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11130711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Oct;18(10):2749-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16998070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 May 19;23(10):2156-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15131698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1995 Mar 15;3(3):289-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7788295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2001 Dec 1;31(11):1287-312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11728801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2004;79(3):265-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16328792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Jul 9;274(28):19714-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10391912</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Languedoc-Roussillon</li>
<li>Occitanie (région administrative)</li>
</region>
<settlement>
<li>Perpignan</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Bonnard, Geraldine" sort="Bonnard, Geraldine" uniqKey="Bonnard G" first="Géraldine" last="Bonnard">Géraldine Bonnard</name>
<name sortKey="Droux, Michel" sort="Droux, Michel" uniqKey="Droux M" first="Michel" last="Droux">Michel Droux</name>
<name sortKey="Khafif, Mehdi" sort="Khafif, Mehdi" uniqKey="Khafif M" first="Mehdi" last="Khafif">Mehdi Khafif</name>
<name sortKey="Meyer, Yves" sort="Meyer, Yves" uniqKey="Meyer Y" first="Yves" last="Meyer">Yves Meyer</name>
<name sortKey="Riondet, Christophe" sort="Riondet, Christophe" uniqKey="Riondet C" first="Christophe" last="Riondet">Christophe Riondet</name>
</noCountry>
<country name="France">
<region name="Occitanie (région administrative)">
<name sortKey="Reichheld, Jean Philippe" sort="Reichheld, Jean Philippe" uniqKey="Reichheld J" first="Jean-Philippe" last="Reichheld">Jean-Philippe Reichheld</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C78 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C78 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17586656
   |texte=   Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17586656" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020